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Abstract—To study the problem of exponential stabilization 

for stochastic networked systems with interval distribution 

time delays. A new approach is given to model the 

networked control systems with the stochastic time delays 

which is assumed to be satisfying a interval distribution. 

The mean-square exponential stabilization condition is 

presented in terms of linear matrix inequality. A numerical 

example is given to demonstrate the validity of the results. 
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I.  INTRODUCTION 

Networked control systems (NCSs) are a type of 

distributed control systems where sensors, actuators and 

controllers are interconnected by communication 

networks. The introduction of common-bus network 

architectures can improve the efficiency flexibility, and 

reliability of these integrated applications, reducing 

installation, reconfiguration and maintenance time and 

cost. For these advantages, the networked control systems 

receive more and more attention and has been a very hot 

research topic [1-2]. 

The insertion of the communication network in the 

feedback control loop makes the analysis and design of 

the NCSs very complex [3-4]. The change of 

communication architecture from point-to-point to 

common bus induces different forms of time delay 

uncertainty between sensors, actuators and controllers. 

These time delays come from the time sharing of the 

communication medium as well as the computation time 

required for physical signal coding and communication 

processing [5-6]. It is well known in control systems that 

time delays can degrade a system's performance and even 

cause system instability. Another significant difference 

between NCSs and standard digital control is the 

possibility that data may be lost while in transit through 

the network because of uncertainty and noise. To analyze 

the above mentioned issues, especially the problem of 

network induced delay and packet dropout, Gao presents 

a new approach to solve the problem of stabilization for 

networked control systems. A controller design procedure 

is proposed for stabilization of the closed-loop NCSs [7]. 

In [8], the stabilization problem for a class of uncertain 

networked control systems with random communication 

network induced delays is considered. Based on the 

Lyapunov method, a dynamic output feedback controller 

is designed in terms of the solvability of linear matrix 

inequalities. Wang studies the problem of designing H  

controllers for networked control systems with both 

network induced time delay and packet disordering [9]. A 

delay switching based method is proposed to model the 

NCSs with long time delay as switched systems. And 

H  controller design is proposed by using LMI. A new 

Lyapunov-Krasovskii functional, which makes use of the 

information of both the lower and upper bounds of the 

time varying network induced delay, is proposed to drive 

a new delay-dependent H  stabilization criterion [10]. 

But the above papers consider the robust control of 

certain NCSs. In this paper, our objective is to consider 

the problem of mean-square exponential stability control 

for a class of networked control systems with interval 

distribution time delay. The mean-square exponential 

stability condition is obtained by using the LMI approach. 

II.  PROBLEM FORMULATION 

Consider the following control system with delay 

( ) ( ) ( ) ( )

( ) ( )                          [ ,   0]

dx t Ax t A x t d Bu t

x t t t d

   

  
      (1) 

where ( ) nx t R  is the state vector， ( ) mu t R  is 

the input vector， d is state delay , n n

dA A R   are 

known real constant matrices ，
n mB R  is input 

matrix， ( ) nt R   is the given initial state on[ ,  0]d . 

Throughout this note, we suppose that all the system's 

states are available for a state feedback control. In the 

presence of the control network, data transfers between 

the controller and the remote system, e.g., sensors and 

actuators in a distributed control system will induce 

network delay in addition to the controller proceeding 

delay. We introduce stochastic delay 
( )t

 to denote the 

network-induced delay.  

We will design the state feedback controller 

( ) ( ( ))u t Kx t t                        (2) 

Inserting the controller(2) into system (1), we obtain 

the closed system: 
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( ) ( ) ( ) ( ( ))

 ( ) ( )                  [   0]

dx t Ax t A x t d BKx t t

x t t t d,





    

  
  (3) 

The initial condition of the state is supplemented as 

 ( ) ( )x t t , where ( )t  is a smooth function on 

[ ,  0]d , max{ ,  }d d .Therefore, there exists a 

positive constant   satisfying 

|| ( ) ||      [ ,  0]t t d     

It is assumed that there exists a constant 1 [0,  ]   

such that the probability of ( )t  taking values in 

1[0,  ) and 1[ ,  ]   can be observed. In order to employ 

the information of the probability distribution of the 

delays, the following sets are proposed firstly 

1 1 2 1{ : ( ) [0,  )},   { : ( ) [ ,  ]}t t t t         

Obviously, 
1 2 R    and 1 2    

Then we define two functions as: 

1 2

1 2

1 1 2

( )    ( )    
( ) ,    ( )

0               

t t t t
h t h t

t t

 



  
  

  

(4) 

Corresponding to ( )t  taking values in different 

intervals, a stochastic variable ( )t  is defined 

1

2

1         
( )

0        

t
t

t



 


                        (5) 

Where we suppose that ( )t  is a Bernoulli distributed 

sequence with Pr { ( ) 1} { ( )}ob t E t     , where 

[0,1]   is a constant. 

With (4-5),we know that the systems (3) is 

equivalent to 

1

2

( ) ( ) ( ) ( ) ( ( ))

          (1 ( )) ( ( ))

      ( )

( ) ( )                     [   0]

dx t Ax t A x t d t BKx t h t

t BKx t h t

A t

x t t t d,









    

  



  

 (6) 

where

1 2

[    ( )   (1 ( )) ]

( ) [ ( ),   ( ),   ( ( )),   ( ( ))]

d

T T T T T

A A A t BK t BK

t x t x t d x t h t x t h t

 



 

   
 

III.  MAIN RESULTS 

Lemma1[2] For any vectors ,a b  and matrices 

, , ,N X Y Z  with appropriate dimensions, if the 

following matrix inequality holds 

0
T

X Y

Y Z

 
 

   
then we have 

, ,
2 inf

T

T

T TX Y Z

a X Y N a
a Nb

b Y N Z b

     
       

       

Lemma2[11] The LMI 
( ) ( )

0
* ( )

Y x W x

R x

 
 

 
 is 

equivalent to 

( ) 0R x  ,
1( ) ( ) ( ) ( ) 0TY x W x R x W x   

where ( ) ( ), ( ) ( )T TY x Y x R x R x   depend  on x . 

Theorem1 For the given constants 

0,1 0    ， if there exist positive-definite 

matrices , , n nP Q R R  and matrices 
m nK R  , 

,X Y with appropriate dimensions, such that the 

following matrix inequality holds 

11 12

22

0
*

  
   

 
                      (7) 

where 

2 12 2

11 2 11 2

2

2 22 2

1 2 13 2

12

2 2 23 2

2 14 1 2

24 2 2

2

(1 ) (1 )
                       

(1 )

T

T

d dT

d T

d d

T

T

d

T

T

d

PA A P Q P
PA X A RA

X A RA

e Q X A RA

P BK Y X A R BK

Y X A R BK

P BK X Y A R BK

X Y A R BK




 

 

 

   

  

   

  



   
  

    
     

   
  

 

    

  

2 33 3 3 2

22

3 4 2 34

2 44 4 4 2

                               
(1 )

T T T

T

T T T

X Y Y K B R BK

Y Y X

X Y Y K B R BK

  



  





   
  



  


    

with the controller (2), the network control systems(6) is 

mean-square exponentially stable. 

Proof  Choose a Lyapunov functional candidate for the 

system (6) as follows： 

2

2 ( )

0
2 ( )

( ) ( ) ( ) ( ) ( )

          ( ) ( )

t
T T s t

t d

t
T s t

t

V t x t Px t x s Qe x s ds

x s Re x s dsd





 








 

 





 
 

where , ,P Q R  positive-definite matrices in theorem1. 

Then, along the solution of system (6) we have  

2

2

2 ( )

( ) 2 ( )

2 ( ) ( ) ( ) ( )

  ( ) ( )

  ( ) ( ) 2 ( ) ( )

  ( ) ( )

T T

T d

T T

t
T s t

t

V t V t

x t Px t x t Qx t

x t d Qe x t d

x t Rx t x t Px t

x s Re x s ds









 









 

  

 

 

      (8) 

With 

1

2

( )

1 2
( )

( ( )) ( ( )) ( ) 0
t h t

t h t
x t h t x t h t x s ds




      

For any 4n n  matrix 
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1

2

3

N

N N

N

 
 


 
  

 

We know 

                    

1

2

( )

1 2
( )

0 ( ) [ ( ( )) ( ( )) ( ) ]
t h t

T

t h t
t N x t h t x t h t x s ds




              

(9) 

With lemma1 and (9), we obtain 

1

2

1 2

( )

2 ( )( )

0 2 ( ) [ ( ( )) ( ( ))]

( ) ( )
    

( ) ( )

T

T
t h t

T T s tt h t

t N x t h t x t h t

t X Y N t
ds

x s Y N Re x s



 



   

     
           


2

1 2

2 ( )

2

 2 ( ) [ ( ( )) ( ( ))]

    ( ) ( ) ( ) ( )

T

t
T T s t

t

t Y x t h t x t h t

t X t x s Re x s ds





   



   

  
(10) 

Inserting(10)into(8), we have： 

 

1

2

2

2 2

( ) 2 ( )

( )[ 2 ] ( ) 2 ( ) ( )

   2 ( ) ( ) ( ( ))

   2 ( ) (1 ( )) ( ( ))

   ( ) ( )

    2 ( ) 0 0 ( )

    ( ) ( ) ( ) ( )

T T

d

T

T

T d

T

T T

V t V t

x t PA AP Q P x t x t PA x t d

x t P t BKx t h t

x t P t BKx t h t

x t d Qe x t d

t Y I I t

t X t x t Rx t











 

   





     

 

  

  

 

 

    (11) 

then 

{ ( ) 2 ( )}

( ( )) ( ( )) ( ) ( )
r r

T

i j

i j

E V t V t

z t z t t t



   



 
 

With matrix inequality(7), we know 

{ ( )} 2 { ( )}E V t E V t   

therefore 
2

max max

2 2 2

max

{ ( )} { (0)}e [ ( ) ( )

                ( ) ] {|| ( ) || }e

t

t

E V t E V P d Q

R E t





 

  





  


(12) 

Obviously 
2

min{ ( )} ( ) {|| ( ) || }E V t P E x t                (13) 

From(12-13), we obtain 

2

max max max

min

{|| ( ) ||}

( ) ( ) ( )
{|| ( ) ||}e

( )

t

E x t

P d Q R
E t

P

   




 


With the Lyapunov stability theorem and the above 

inequality, we know that the system (6) is mean-square 

exponentially stable. 

Theorem2 For the given constants 

0,1 0    ， if there exist positive-definite 

matrices , , n nP Q R R   and matrix 
m nK R  , 

,X Y with appropriate dimensions, such that the 

following linear matrix inequality holds 

11 12

22

0
*

  
   

 
                      (14) 

Where 

2 12 2 13 1

2 11

2

11 2 22 2 23 2

2 33 3 3

2

*

* *

T

d

d

T

AP PA Q
A P X BK X Y

P X

e Q X X Y

X Y Y



  
 

 





  
   

  
     
 

  
 
  

1 2 14 2 2

12 2 24 2 2

2 34 4 3 2

2 44 4 4 2

12 2

2

(1 ) (1 )

(1 )

0

0 (1 )

0

(1 )

T T

T T

d d

T T T

T T T

BK Y X PA PA

X Y PA PA

X Y Y K B

X Y Y K B

R

R

     

    

  

  

 

 

    
 

    
   

   
 

   
   

with the controller 
1( ) ( )u t KP x t , the 

systems(6) is mean-square exponentially stable. 

Proof: The proof is omitted. 

IV.  SIMULATION 

Consider the networked control systems in the form of 

(7), where  

3 1 1 0
,

0 4 1 2
dA A

    
    

    
,

0.2

0.1
B

 
  
 

,

11, 0.5, 0.5,     0.1, 0.1d   . Solving 

the linear matrix inequality (14), we can obtain the gain 

matrix K  of the stabilizing controller ( )u t  

[ 0.7645  2.5692]K    

From the theorem 2, we know that the systems (6) is 

mean-square exponentially stable. 

V.  CONSLUSION 

This paper considers the problem of mean-square 

exponential stability control for a class of networked 

control systems with interval distribution time delay. 

Based on the Lyapunov stability theorem, a sufficient 

condition and the controller design approach are given in 

term of LMI. 
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